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　　During the last half century significant advances in metabolic modeling and 
whole-cell simulation using the human red blood cell as a model system were 
achieved. From initial studies chaining enzymes together as pathways, modeling 
frameworks for metabolic pathways were developed. Simulation software capable 
of modeling multiple biochemical and genetic processes facilitated the move toward 
cell-scale modeling and enabled complementary workflows linking omic data and 
computational studies for model-driven design. Here, we review selected milestones 
in the history of mathematical modeling of the human red blood cell.

Abstract:
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Throughout the history of computational biochemical modeling, the human red 

blood cell (RBC) has been an important model system. As the most abundant cell in 

the human body (Sender et al., 2016), the RBC plays important physiological roles in 

gas transport (Doctor and Stamler, 2011; Garby and Meldon, 1977). Historically, the 

RBC has been considered to be a relatively simple cell type whose main function was 

in transport of respiratory gasses from the lung to the tissues. With the advent of omic 

technologies, the RBC can now be viewed in a new light, showing that its 

functionality may be more complex and essential than previously believed (Nemkov 

et al., 2018). For almost five decades, the human RBC has served as the ideal cell 

type for the development of mathematical models due to the significant amount of 

available experimental data, ease of sampling, its relative metabolic simplicity, and 

its physiological robustness over the course of its 120-day lifespan. It has thus played 

an important role in the history of systems biology and the quest to construct whole-

cell dynamic simulators.

Here, we review the history of mathematical modeling in the RBC. This history 

breaks down into roughly four time periods (Fig. 1). We discuss a few selected 

milestones from each period. We start by surveying early efforts to model enzyme 

kinetics for individual enzymes and how they are chained together into pathway 

models. As the scope and complexity of metabolic pathway models grew, they 

brought about the period where whole-cell biophysical models were formulated. The 

Keywords: red blood cell, metabolism, computer simulation, mathematical models, systems 
biology
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　ヒト赤血球をモデル系とした代謝モデリングと全細胞シミュレーションはこ
の半世紀の間に大きく発展した。酵素をパスウェイとして連結する初期の研
究に基づき、代謝パスウェイのモデリングフレームワークが開発されるように
なった。複数の生化学的・遺伝学的プロセスをモデリングできるシミュレーショ
ンソフトウェアは、細胞スケールのモデリングへの移行を促進し、モデル駆動
設計のためのオミックスデータと計算機研究を結びつける補完的なワークフ
ローを可能にした。本稿では、ヒト赤血球の数理モデリングの歴史におけるマ
イルストーンを紹介する。
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advent of high-throughput data collection methods made it possible to derive large-

scale models from omic data, signifying the start of the current era in which whole-

cell models are combined with omics data. In each epoch, RBC modeling has been 

integral to several significant advancements in systems biology and biomedical 

research. Our discussion aims to contextualize these important milestones and explore 

how they may bridge the gap for future progress in whole-cell modeling of human 

RBCs.

1　From Enzyme Kinetics to Metabolic Pathways
Early in the 20th Century, enzyme kinetics were developed and studied via well-

controlled in vitro environments. These early efforts led to the formulation of classical 

mechanisms for representing enzyme kinetics (Briggs and Haldane, 1925; Michaelis 

Figure 1: A timeline of selected milestones in the history of modeling human red blood 
cells. The history of whole-cell modeling for the human red blood cell is decades long, with 
many researchers contributing pioneering work in the fields of biomedical science and 
computational systems biology. For the purposes of this review, we have broken the timeline 
into four epochs which will structure our discussion: (1) Enzyme kinetics to metabolic 
pathways; (2) Metabolic pathways to whole-cell biophysical models; (3) Whole-cell biophysical 
models to omics-derived models; and (4) The next frontiers.
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et al., 2011). The formulation of new methods for deriving rate laws greatly reduced 

the amount of time and effort required to mathematically model complicated enzyme 

mechanisms (Cleland, 1967; King and Altman, 1956). Because the RBC is primarily 

dependent on glycolysis for energy, it became the cell type of choice for many early 

studies of enzyme and pathway kinetics (Heinrich et al., 1978; Heinrich and 

Rapoport, 1974a). Furthermore, the study of allosteric binding—like oxygen binding 

to hemoglobin—led to the development of models representing the kinetics 

associated with allosteric effectors (Monod et al., 1965). 

The recognition that computers could represent an opportunity to study multi-

enzyme systems spurred the development of programs for the digital representation 

of chemical reactions (Chance et al., 1960). Starting with simple chemical kinetics, 

computational methods quickly evolved to simulate complex enzyme mechanisms 

(Garfinkel et al., 1961, 1966). Consequently, these developments led to single-enzyme 

systems that were computationally modeled with significant detail, enabling an 

exploration of the feasibility for proposed enzymatic mechanisms as well as the 

elucidation of new mechanistic insights through the fitting of results to match 

experimental data.

Single-enzyme kinetics could be modeled with increased detail and accuracy 

due to the smaller number of parameters and the need to only fit one reaction velocity 

to experimental data. However, modeling multi-enzyme systems proved to be 

significantly more complicated. Additional complexities arise when considering 

enzymes that are influenced by effectors simultaneously, and enzymes that are 

affected by compartmentalization and cellular membranes (Heinrich et al., 1978). To 

analyze features of regulation of a metabolic pathway, Heinrich and Rapoport 

(1974b) used control theory to generate a linear approximation of multi-enzyme 

systems. They utilized a steady-state assumption and simplified differential equations 

to consider the several enzymes which, when chained together, form a pathway (Fig. 

2). By considering the entire pathway, identification of effector binding sites in real 

systems could be obtained while avoiding the erroneous conclusions that were drawn 

through the simple crossover theorem (Heinrich and Rapoport, 1974a). 
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By applying steady-state kinetics, Rapoport et al. (1974) derived a pathway 

model of glycolysis in human red blood cells. Mathematical analyses of the 

characteristic time constants revealed that glycolytic flux is controlled by the 

hexokinase (HK) and phosphofructokinase (PFK) enzymes, and that control was 

indicative of enzymatic interactions with effector molecules (Fig.2). Subsequent 

expansion of the model included the adenosine triphosphate (ATP) synthesis and 

degradation, demonstrating a buffering effect produced by the Rapoport-Luebering 

shunt for maintaining the ATP concentration (Rapoport and Heinrich, 1975). Schauer 

et al. (1981) endeavored to explore the functional roles of adenosine nucleotide 

metabolism by including synthesis and degradation of adenine nucleotides in their 

expanded model. Ataullakhanov et al. (1981) connected the glycolytic and pentose 

phosphate pathways and analyzed the interdependence of pathway activities with 

respect to stabilization of key cofactor concentrations. To quantify the interlinked 

Figure 2: Application of the steady state assumption to a pathway of enzymes. (Rapoport et 
al., 1974) developed a framework for mathematical analyses of regulatory control in metabolic 
pathways by assuming the influxes and effluxes for a given metabolite are balanced at steady 
state. The application of the control theory of steady states to the glycolytic pathway in 
erythrocytes revealed that  f lux is primarily controlled by the hexokinase and 
phosphofructokinase enzymes (Rapoport et al., 1974). Abbreviations: GLC, glucose; G6P, 
glucose 6-phosphate; F6P, fructose 6-phosphate; FDP, fructose 1,6-bisphosphate; HK, 
hexokinase; PGI, phosphoglucoisomerase; PFK, phosphofructokinase.
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processes of energy metabolism and osmoregulation, Brumen and Heinrich (1984) 

incorporated active and passive ion transport processes into the glycolytic pathway 

model and formed a metabolic osmotic model.

Through the application of expanded glycolytic models, mathematical modeling 

was shown to be capable of quantitatively estimating metabolic consequences of an 

individual enzyme afflicted with an enzymopathy. Using calculated kinetic 

parameters obtained from three patients afflicted with varying severities of pyruvate 

kinase (PYK) deficiency, Holzhutter et al. (1985) validated previously held 

assumptions concerning the severity of hemolytic anemia and metabolic 

abnormalities in energy metabolism. This study exemplified how mathematical 

models could represent metabolic abnormalities consistent with clinical phenotypes. 

With advances in computing hardware and theories for biological modeling (Lumb, 

1987)—combined with improvements in DNA sequencing automation (Smith et al., 

1986)—increasing the scope, scale, and complexity of biochemical models was 

becoming ever more possible.

2　From Metabolic Pathways to Whole-cell Biophysical Models
The various expansions of the glycolytic pathway model enabled the 

quantification and prediction of physiological phenomena through separate 

mathematical models. However, an integrated model of all these pathways was 

lacking. In 1989, Joshi and Palsson built a comprehensive cell-scale kinetic model of 

the RBC in which glycolysis, the pentose phosphate pathway, adenine nucleotide 

metabolism, osmotic pressure balancing, electroneutrality, and transport processes 

were all included in one unified modeling framework. They proceeded to demonstrate 

the practical utility of such a whole-cell model through various simulations that 

predicted the pH dependence of the Donnan ratio, the consequences of PYK genetic 

variation, and the dynamic responses of key compounds under blood storage 

conditions (Joshi and Palsson, 1990). 

The increasing scope and complexity of metabolic models—in which several 

cellular processes interact in various manners across multiple time-scales—
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necessitated the development of multipurpose simulation software capable of whole-

cell simulations. Extensible software that adheres to an object-oriented modeling 

paradigm was needed to ensure accuracy when modeling at the scale of whole-cell 

RBC metabolism (Takahashi et al., 2002; Yachie-Kinoshita et al., 2010). To address 

these challenges, Tomita et al. (1999) created the E-CELL software environment, the 

first framework for whole cell modeling of cellular processes. Using the E-CELL 

framework, interactive and repeatable simulations can be conducted to facilitate a 

wide variety of in-silico experiments. The visualization and analysis of generated 

predictions could then serve as complementary guides for subsequent experimental 

design and interpretation in model-driven design (Fig. 3). 

Through successive improvements, E-CELL became a multi-platform 

framework for whole-cell simulation (Takahashi et al., 2003). As one of the first to 

include the Systems Biology Mark-up Language (SBML), E-CELL helped initiate 

the community-wide adoption of standards for model interoperability and 

exchangeability (Hucka et al., 2003). Following the emergence of parallel computing, 

the E-CELL simulation engine was redesigned for scalable modeling. The 

implementation of a modular meta-algorithm for mixed-mode simulation enabled 

various time-driven algorithms to be assigned to different model components, 

facilitating the simulation of cellular subsystems interacting across multiple 

timescales (Takahashi et al., 2002; 2004).

The ability to reproduce cellular behavior through repeatable simulations for 

various conditions was foreseen as having significant benefits in understanding the 

effects of abnormal pathological conditions (Tomita, 2001). For example, single 

nucleotide polymorphisms (SNPs) could result in different enzymes and the 

variations in their kinetic parameters. Simulations demonstrated how the genotype 

associated with an enzymopathy and the manifestation of its clinical phenotype could 

be understood in the context of cellular metabolism (Jamshidi et al., 2002). The study 

characterized the cellular responses for several variants of both PYK and G6PDH 

deficiencies to elevated metabolic loads and elucidated insights into differences in 

cellular function for chronic and non chronic hemolytic anemia. 
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Figure 3: The cyclic process of model-driven design and discovery. Biochemical knowledge 
and experimental findings are integrated to formulate hypotheses that can be explored with 
mathematical models. Using multipurpose, multiplatform software environments for scalable 
simulation, mathematical models are constructed and simulated to run in silico experiments to 
predict cellular responses for different conditions (boxed with solid lines). Predictions are then 
visualized and analyzed to understand the systematic responses of cellular components and 
generate hypotheses. Using the knowledge derived from experimental validation of hypotheses, 
models are refined and expanded for subsequent in silico studies in the cyclic process of model-
driven design. The metabolic map shown is based on the refinement and expansion of the cell-
scale RBC model (Joshi and Palsson, 1989) to include de novo glutathione synthesis and export 
(Nakayama et al., 2005), magnesium binding, hemoglobin allostery, Band 3 interactions 
(Kinoshita et al., 2007; Nishino et al., 2009), and guanosine uptake (Nishino et al., 2013). 
Abbreviations: GLC, glucose; GSSG, oxidized glutathione, HX, hypoxanthine; ADE, adenine, 
Pi, inorganic phosphate; ADO, adenosine; INO, inosine; LAC, lactate; PYR, pyruvate; Na, 
sodium ion; K, potassium ion; Mg, magnesium ion; PFK, phosphofructokinase; ALD, aldolase; 
GAPDH, glyceraldehyde-3-phosphate dehydrogenase;, oxyHb, oxyhemoglobin; deoxyHb, 
deoxyhemoglobin; B3, Band 3 membrane protein.
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Discrepancies between in silico predictions and experimentally determined 

observations are inevitable, making algorithmic assessment and iterative refinement 

of models a necessary and critical step for their improvement (Ni and Savageau, 

1996). When simulating a variant of glucose-6-phosphate dehydrogenase (G6PDH) 

deficiency, Nakayama et al. (2005) found that their initial model predicted a 

significantly shorter half-life compared to real cells containing the same deficiency. 

By refining their model via the inclusion of pathways for de novo synthesis of 

reduced glutathione (GSH) and export of oxidized glutathione (GSSG), they 

successfully demonstrated the essentiality of these pathways for accurate simulation 

of G6PDH deficiency. Furthermore, they showed that abnormal conditions such as 

those caused by enzymopathies may result in increased activation of typically low-

activity subsystems as a compensatory mechanism. The broad implications of these 

findings are that the inclusion of many, if not all, metabolic pathways is necessary for 

the accurate simulation of metabolic abnormalities. Ultimately, the research during 

this time resulted in scalable models and computing frameworks that allowed for the 

simulation of large-scale models. 

3　 From Whole-cell Biophysical Models to Omics-derived 
Models
The availability of scalable simulation environments lowered the technological 

barriers associated with large-scale dynamic modeling and simulation. Genome 

sequences could be utilized in automating construction of large metabolic models, 

reducing the manual labor required to formulate genome-scale metabolic models 

(Arakawa et al., 2006). Thus, limitations in dynamic modeling evolved to become 

primarily associated with parameterization due to the considerable amount of data 

required for such large-scale models. Mathematical frameworks for analyzing 

metabolic flux states through constraint-based reconstruction and analysis (COBRA) 

were shown to be effective at large-scale analysis of metabolic networks (Price et al., 

2004). COBRA models rely primarily on network structure derived from genomics 

and flux balance analysis (FBA), requiring minimal parameterization for accurate 
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predictions (Varma and Palsson, 1994). As a model cell type, the human RBC model 

was also utilized in development of many of these novel approaches for addressing 

the sparsity of kinetic data using omic data to reduce the number of kinetic 

parameters required for dynamic simulation (Yugi et al., 2005). Using genomic and 

proteomic data, Bordbar et al. (2011) derived one of the most expansive cell-scale 

reconstructions of RBC metabolism. By mapping morbid SNPs and pharmaceutical 

treatments that are known to target the RBC and by applying flux variability analysis, 

the RBC was shown to have a more extensive role in human metabolism than 

previously believed, confirming its potential as a clinical biomarker.

Other omic data like metabolomics have become a useful tool for studying the 

metabolic state of cellular systems. The technological innovations surrounding high-

throughput methods made it possible to collect metabolomics data for both qualitative 

and qualitative analyses (Soga et al., 2003, 2004). Accordingly, it became possible to 

verify predictions made with metabolic models through analysis of the metabolome. 

Circulating RBCs are constantly subject to oxidative stress, undergoing changes 

between normoxic and hypoxic conditions, and evidence suggested Band 3 

membrane protein interactions with hemoglobin may trigger compensatory 

mechanisms for maintaining intracellular ATP levels in hypoxic RBCs. Researchers 

began to study this phenomenon using a dynamic model containing Band 3 

interactions with hemoglobin and glycolytic enzymes (Kinoshita et al., 2007). The 

comparison of in silico predictions with the results obtained from metabolome 

analyses provided mechanistic insight into how hemoglobin allostery and T-state 

binding interactions with metabolites facilitated the maintenance of ATP and 

2,3-Diphosphoglycerate (2,3-DPG) concentrations. 

The findings by Kinoshita et al. (2007) had implications for RBCs in blood 

storage, as there were no effective methods to prevent their ATP and 2,3-DPG 

depletion. Using a genetic algorithm for parameter estimation (Kikuchi et al., 2003), 

Nishino et al. (2009) modified the previous model to reflect RBCs preserved in cold-

storage conditions. Through in silico experiments and metabolome analyses, they not 

only verified their model but also identified several factors for improving blood 
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storage conditions through maintenance of ATP and 2,3-DPG levels. By refining the 

metabolic model to include guanine uptake and the combination of in silico and 

metabolome analyses, Nishino et al. (2013) subsequently provided clarity into the 

mechanistic basis driving ATP and 2,3-DPG maintenance and revealed insights into 

the trade-offs between metabolic benefits and side-effects associated with the additive 

solution.

Other researchers also applied these modeling methods to blood storage as a 

relevant and actionable application of mathematical modeling tools. By integrating 

the latest RBC reconstruction with time-course metabolomics data obtained from 

RBCs in storage, metabolic states at various stages of RBC decay under storage 

conditions were identified, leading to the discovery of key biomarkers that defined 

the metabolic age of stored RBCs (Bordbar et al., 2016; Paglia et al., 2016). To 

quantitatively predict dynamic intracellular metabolic changes of the network, a 

novel FBA method capable of reconciling time-course metabolomics and network 

structure was developed. Subsequent application of the method provided new insights 

into extracellular citrate as a storage additive that were not observable with standard 

FBA methods (Bordbar et al., 2017; Yurkovich et al., 2017). The RBC metabolic 

reconstruction (Bordbar et al., 2011) also served as the basis for the creation of 

personalized RBC models. To study the metabolic consequences of individualized 

variation, genomic and fasting-state metabolomic data was obtained and mapped onto 

the constraint-based reconstruction (Bordbar et al., 2015). 

4　The Next Frontiers
Significant advances in metabolic modeling and whole-cell simulation were 

achieved over the past fifty years. Modeling of the RBC has been critical at each step 

of the way: from the initial development of a framework for modeling metabolic 

pathways in the 1970s to the recent applications in personalized modeling, biomarker 

identification, and novel modeling method development. As whole-cell modeling is 

critical to understanding the genotype-phenotype relationship, the increasing 

recognition of its potential in transforming medicine is leading to the development of 
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guiding principles in generating whole human cell dynamical models (Szigeti et al., 

2018). New insights into the conservation of kinetic parameters across genome-scale 

kinetic models offer the opportunity to understand the mechanisms of genotype-

phenotype relationships (Palsson and Yurkovich, 2022). With the level of detail 

provided by longitudinal studies, detailed data-driven models of disease development 

can be developed to enable precision medicine and personalized approaches. 

The human RBC has been used as a model cell for the development of modeling 

methods and driven the advancement of simulation technologies. These advances 

have aided in the understanding of human metabolism and genetic variation on a 

personalized level as these modeling approaches not only led to discoveries in the 

RBC but were applied to other cellular systems. Notably, the broader development of 

whole-cell computable models—and all the accompanying computational methods, 

simulation frameworks, and standards—has been fundamentally advanced by some 

of the work reviewed here that pioneered these tools in the RBC. The RBC will 

undoubtedly continue to play a significant role in developing complete proteome-

constrained models, personalized medicine, and other notable milestones yet to come 

in future work.

Several foundational developments drove the history of mathematical modeling 

of the human RBC. The development of the E-CELL platform—a pioneering 

simulation platform that enables easy and informative simulation of whole cell 

behavior—was an important milestone. As one of the first multi-platform software 

environments for standardized modeling, E-CELL provided the framework necessary 

to facilitate the move toward cell-scale modeling by linking biochemical and genetic 

processes to simulate cellular dynamics across multiple timescales. Further, its 

existence catalyzed the development of other such modeling and simulation 

platforms. Through these accomplishments, Tomita and colleagues exemplified how 

metabolome analysis and in silico simulation could be paired together to understand 

underlying metabolic mechanisms through whole-cell modeling and simulation.
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