
自由論題

170

　本稿では，ヒトの運動についての事前知識に基づいて慣性センサによって姿
勢を復元するうえで必要とされるそのドリフト軽減方法を議論する。データの
処理過程においてセンサデータにはノイズが必ず伴うが，角度推定の精度は運
動固有のパターンに強く依存している。そこで我々は，角度推定の精度を上げ
るために，角速度の大きさと運動の複雑さを考慮した柔軟なドリフト補償方法
を推定フィルタに付加した。運動に関する事前知識を用いることで、ドリフト
補償のためのアノテーションが容易に自動化される。我々のドリフトの補償方
法は十分な精度をもたないセンサシステムにおいて高精度でヒトの運動を分
析するための一手法として将来貢献できると考えられる。
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　　In this paper, we discuss a strategy for motion dependent drift reduction in 
orientation estimates from inertial measurement units. Measurements showed that 
drift evoked from sensor noise could be very present in the orientation estimates 
when the raw sensor data was processed uniformly over diverse motion patterns. 
Independent of the employed processing filter, angular accuracy especially varied 
with the amount of angular velocities and the number of motion dimensions 
involved. We therefore categorized those dominant motion properties and used 
the resulting annotations to add a flexible drift compensation to the underlying 
estimators. Results showed that data accuracy increased by taking such elementary 
motion characteristics into account. Using a-priori motion knowledge, the presented 
intelligent drift compensation can contribute to higher data quality in automated 
kinematic analyzes of sport motions in future.
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1   Introduction
　　Wearable sensor technology became an important tool for human 

performance monitoring and is nowadays also arousing more and more 

interest in elite sports training and competition: for every professional 

athlete, success in competitions is economically important and a driving 

factor for individual development, so that much effort is put on the creation 

of an ideal training environment. This often goes along with the use of 

computer-assisted training technologies. Inertial measurement units (IMUs) 

built from accelerometers, gyroscopes and magnetic field sensors can be an 

ideal device as they are cheap, light and capture human motion in an easy, 

flexible and direct way. However, their data output is sparse and they do 

not directly provide motion information necessary for conventional motion 

analysis. For this, it is essential to process the inertial data into more intuitive 

and meaningful motion information of reliable accuracy and precision.

　　With the increasing popularity of inertial sensors as motion capture 

tools, many methods have been introduced that estimate meaningful motion 

information like segment orientations or body angles from the inertial 

sensor input data. The most famous methods are based on sensor data 

fusion of integrated angular velocities and accelerometer and magnetometer 

measurements like the Complementary and the Kalman Filter. All those 

methods originally got developed for non-dynamic situations like inertial 

navigation, and later got optimized for a use in human motion capturing. 

They can enable fundamental kinematic analysis in medical applications 

such as gait analysis or stroke rehabilitation [19, 7, 2]: with the absence of quick 

motions, it is easy to estimate the orientations from the sensors’ accelerations 

and angular velocities. Natural constraints of the restricted motion 

Inertial sensors, motion measurement, sensor drift, kinematics, motion analysis
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environment like ground contact phases can furthermore help to reduce drift 

and increase accuracy in such a scenario [23]. Most sports, however, consist of 

more complex motions with high accelerations and angular velocities. Filter 

properties developed in the rehabilitation context might therefore not be 

applicable to sports in the same way [12].

　　Technology for full body motion capturing of sport performances has 

been introduced commercially already several years ago using a general 

Kalman filter and additional biomechanical constraints that increase the 

system’s robustness [18]. It serves as a quasi-standard since it offers high 

accuracy and usability [21]. However, the relatively high initial cost, as 

well as disturbing sensor sizes and vulnerability to water can detain sport 

research and training facilities from the acquisition of commercial systems. 

Instead, alternative hardware solutions that offer a smaller and waterproof 

combination of inertial sensor modules are developed and employed: unlike 

commercial systems, independent sensor systems are not bound to certain 

determined data processing methods. Consequently, they can be used in 

a more flexible way in subsequent applications. On the other hand, it is 

first necessary to implement methods that determine full-body kinematics 

necessary for a meaningful biomechanical performance analysis. Especially 

the derivation of highly accurate orientation estimates from the sensor data 

can be a challenge. To date, many sport motion analyses therefore either 

retrieved direct knowledge from the measured accelerations and angular 

velocities [17, 4], or from special aspects of a motion and specific body parts 

that play an important role for the performance [8, 20].

　　In recent years, several independent sensor modules for human motion 

capturing and the estimation of body segment orientations have been 

introduced in literature [2, 9, 3, 1]. One interesting example is the wireless micro 

IMU introduced in [10], that is of particularly small size and high accuracy 

suitable for motion tracking. The authors advise that in order to obtain best 

accurate orientation estimates, initial calibrations shall be performed on 
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all sensor types first. With incomplete or imperfect calibration processes, 

sensor data can otherwise be subject to remaining inaccuracies based on 

temperature-induced noise variations, angle misalignment and magnetic field 

bias that increase the error in resulting angular data estimates. In case that 

a powerful and reliable hardware calibration is not possible - due to missing 

calibration equipment, calibration mishandling or any other reason - it is very 

important to find alternative methods that enhance accuracy. Therefore, we 

wanted to gain deeper insights into the processes that influence the accuracy 

of conventional sensor processing methods. In particular, it might be 

beneficial to process the multidimensional sensor data in a more specific way 

under consideration of the characteristics in sport motions. By identifying 

the underlying mechanisms, eventual constraints and conditions that arise in 

the context of dynamic motion could then be discovered and an appropriate 

use in varying sport disciplines be enabled.

2   Data Collection
　　Our idea was to estimate the body segment orientations of sample 

inertial motion data of different dynamics by determining their accuracy in 

relation to ground truth orientation data from an optical motion capturing 

system. The sample motion database was captured with a total of nine 

waterproof inertial measurement units (Logical Product. SS-WS1215/

SSWS1216, Fukuoka, Japan) [13] with 16 bit quantization rate. Every 

measurement unit was of 67x26x8 mm size and 20 g weight and contained 

triads of gyroscopes, accelerometer and magnetometer for the respective 

x, y and z axes. The sensor modules were sampled at sfs= 500 Hz and were 

specified with a full-scale range of ±1500 dps with 0.67 mV/dps sensitivity 

for the gyroscopes, a minimum full-scale range of ±pm5 G with 191.7 

mV/g sensitivity for the accelerometers and ±pm1.2 Ga full-scale range for 

the magnetic field sensors. They were attached to pelvis (P), and both left 

and right thigh (rT, lT), shank (rS, lS), foot (rF, lF) and arm (rA, lA) of the 
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athlete. The reference ground truth orientation data for every sensor was 

derived from positional data of four optical markers placed in a rectangular 

shape around each sensor (Figure 1). Those marker positions were captured 

by an optical Vicon motion capture system (VICON Nexus version 1.7.1. 

Vicon Motion Systems Ltd, Oxford UK) of 11 cameras sampled at sfV= 

500 Hz and a calibration accuracy of less than 0.8 mm. All sensors were 

started simultaneously by a start command sent from a sensor control 

program via bluetooth and were set to capture data for ts= 30 seconds. The 

measurements were saved within a memory hardware of the sensor and the 

raw accelerations, angular velocities and magnetic field measures were read 

Figure 1   Upper: sensor placement at the athlete’s body with the corresponding 
sensor axes. Lower: sensors attached to the athlete’s body and their four 
corresponding optical markers for the determination of ground truth 
orientation data for accuracy evaluation.



Intelligent Drift Reduction in Inertial Sensor Orientation Estimates Using Elementary Motion Knowledge

KEIO SFC JOURNAL Vol.16 No.1 2016

175

out for further use later. The sensor start signal was received by an external 

antenna and sent to the Vicon software as analog data input, so that sensor 

and ground truth data could be easily synchronized in the post processing 

step. Motions were performed by two different actors and included walking, 

jogging, jumping, turns around the longitudinal axis, jumping jacks, kicking 

and throwing, leading to a total of N=28 data takes with nine sensor files 

each.

3   Methodology
　　To draw valid conclusions on a general system behavior under varying 

motion types (independently of specific system designs), we investigated the 

performance of different orientation estimation filters. Before, every sensor 

was calibrated only in a simple, fundamental way, as it is possible in any 

capture environment and for any sensor-system user. For the accelerometers 

and gyroscopes, the sensor offset was determined in rest along all sensor 

axes under working temperature (meaning with the sensor running for a 

certain time in the capture environment) to avoid temperature drift. For the 

magnetometers, we determined the scale and offset factors by rotating the 

sensors around the main motion axes. Further advanced calibration was not 

performed, so that the captured data simulated application data as it could be 

acquired and processed in motion analysis scenarios.

3.1    Filter Methods

　　We implemented three different attitude estimation methods for the 

processing of inertial sensor data that estimate orientations in quaternion 

representation and therefore do not suffer from gimbal lock caused by 

singularities in the motion data [5]. All filters are fusion filters and have 

been widely used over the last years, especially in low-dynamic motion 

scenarios like gait analysis. In concrete, they are: a first Complementary 

Filter CF1 based on a gradient descent optimization algorithm [14], a second 
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Complementary Filter CF2 based on discrete cosine matrices initially 

developed for attitude reconstruction in robotics and control applications [6, 15] 

and a quaternion-based pseudo-linear Kalman Filter KF designed for real-

time estimation of the orientation of human limb segments [16, 22]. For all 

three methods, the orientation q
・

w obtained from integration of the angular 

velocities served as fundamental orientation estimate, which was then 

refined by adding information from the accelerometers’ and magnetometers’ 

measurement vectors to the f inal output estimate qest. In quaternion 

representation, the integration of the angular velocities can be performed by 

the quaternion derivative q
・

w ,t determined in a simple multiplication at every 

time step t:

sw t here is the extended four-dimensional angular rate vector with the first 

(scalar quaternion) element set to 0. The concrete refining fusion algorithm 

varies with every method and shall be further explained in the following.

　　The idea of CF1 is to merge the data of the integrated orientation q
・

w 

with a second orientation estimate q  obtained in a minimization problem 

from the sensor’s observation measurements vectors to the final estimate  

qest. This optimization problem is described by the difference between the 

actual orientation and the orientation derived from the accelerometer and 

magnetometer data. In concrete, a unique orientation should be found for 

the spatial rotation aligning a predefined reference direction of the field in 

the earth frame with the measured direction of the field in the sensor frame. 

Using constraints on the direction of gravity and global magnetic field, 

the sensor measurement inputs can be assumed as sâ = [0  ax  ay  az]  for 

q
・

w ,t = 
1
2

qw ,t-1 × sw t　　　　　　　　　　　　　　　　　　　　　　　　　　　　　 (1)・

q
・

w ,t = qw ,t-1 ＋ q
・

w ,tΔt.　　　　　　　　　　　　　　　　　　　　　　　　　　　　 (2)
・

・
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the accelerometer and sm̂ = [0  mx  my  mz] for the magnetometer. They are 

then employed in the objective function of the optimization algorithm that 

generates the observation vector based orientation q  . For every time step t,  

qw ,t and q  ,t are then fused with a pre-defined filter gain β as

The convergence parameter β represents the gyroscope measurement error 

that is removed in the direction of the error estimated with q  , t and is the only 

input variable that has to be specified for CF1 (Figure 2).

　To determine the final orientation estimate qest from the gyro rate estimate 

qw by CF2, it is not necessary to define a correcting vector estimate q  . 

Based on the idea that angular changes can be represented in a rotation 

matrix, the divergence of integration and sensor measurement is instead 

achieved by using two correcting terms for the error induced by sensor bias 

and the numerical integration error. Proportional (sensor induced) error 

feedback e = sâ × v^ ＋ sm̂ × w^ is obtained by the cross product between 

estimated direction vectors for gravity v^ and magnetic field w^ obtained from 

qest,t-1 and the sensor field measurements â and m̂. The error accumulating 

with integration over all previous time steps per time step t constitutes the 

q
・

est,t = qw ,t −βq
・

  ,t　　　　　　　　　　　　　　　　　　　　　　　　　　　　     (3)

Figure 2  Fundamental workflow of the first fusion filter CF1.
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integration error correction term eint,t = eint,t-1 ＋e*Δt. Weighing e and eint by 

two filter gains Kp for the proportional error and Ki, the angular velocity data 

is refined to

and then integrated to the final output estimate as in Equation (1) and (2) 

(Figure 3).

　　Used for orientation estimation from inertial sensor data, the general 

principal of a Kalman Filter is as follows: from a previous or initial guess, 

a new value is predicted on the base of the angular velocity data of the 

next time step. This prediction is then compared to the observations of the 

correcting sensor measurement data and the credibility of the prediction 

and observations dynamically rated using information about measurement 

noise and inaccuracies. For the implementation of the third fusion filter 

KF, we chose a variation of this general scheme: a quaternion orientation 

q   is computed from the measurement vectors before the main algorithmic 

cycle of the Kalman Filter with a Gauss-Newton optimization, reducing the 

Kalman Filter’s input observation measurement vector z (the raw 9-axial 

sensor data) to the three angular velocities and q  , t at every time step t. 

sw t = sw t ＋ Kp*et  ＋ Ki*eint,t　　　　　　　　　　　　　　　　　　　　　　  (4)

Figure 3  Fundamental workflow of the second fusion filter CF2.
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This input data conforms to the output signal of the Kalman Filter, which 

constitutes the three angular velocities and the final orientation estimate qest,t. 
With the same number and types of input and output values, the filter can 

consequently be treated as linear and the main computation cycle simplified 

and accelerated.

　　The description of the process model of the filter is the same as for the 

basic approach (e.g. used in [11]):

with the signal value x being a 7-dimensional vector containing the process 

model state values from the angular rates and the components of the 

integrated orientation qw,t . In compliance with the general definitions, Ft 

is the state-transition model defined by the quaternion integration from 

Equation (1) and (2) and Ht the observation model, whose values are either 

set to 1 for the angular velocities or 0 for the remaining quaternion elements 

of z. The process and measurement noise that influence the update of qw in 

x by q  in z are represented by wt and vt (Figure 4). Their values have been 

xt = Ft xt-1 ＋ wt　　　　　　　　　　　　　　　　　　　　　　　                         (5)

zt = Ht xt ＋ vt ,　　　　　　　　　　　　　　　　　　　　　　　                          (6)

Figure 4  Fundamental workflow of the third fusion filter KF.



自由論題

180

determined in a long term observation of the sensors in rest. 

3.2   Accuracy Determination

　　The accuracy of the estimated sensor orientation S
Eqest,t in the global 

earth frame E at every time frame t was determined as numerical deviation to 

a ground truth reference - the camera system orientation C
Eqgt,t captured with 

an optical motion capture system. C
Eqgt,t was computed from two positional 

vectors p→1 and p→2 defined by three of the four captured marker positions 

around each sensor and a third orthogonal vector p→3 built from the cross 

product of  p→1 and p→2 . They were then combined in a rotation matrix and 

transformed into quaternion representation.

　　We computed the difference between S
Eqest,t and C

Eqgt,t as the distance 

between two quaternions EIP defined by the inner product <S
Eqest,t, 

C
Eqgt,t> 

in quaternion representations, which gives a measure on the distance and 

similarity of two orientations. Then, we determined the overall accuracy per 

take as the root mean square error ERMS (RMSE) over EIP by:

whereas i stands for the current examined sample within the data capture of 

length n. Using the quaternion representation as a combination of the three 

Euler components pitch, roll, and heading, this error measure is not prone 

to errors caused by singularities in the Euler angles. However, it also does 

not give a concrete information about angular deviations per sensor rotation 

axis. We therefore def ined an additional RMSE measure ERMS∊ with  

∊ representing the decoupled Euler valuesФ,θand ψ in radians computed 

from the quaternion representations as

EIP  = 1 − <S
Eqest,t, 

C
Eqgt,t > 2  and　　　　　　　　　　　　　　　　               (7)

ERMS  = √1
n Σ

n

i=1 (EIP,i)
2 ,  

　　　　　　　　　　　　　　　　                              (8)
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　　To compare S
Eqest,t to C

Eqgt,t , it was necessary to bring both into the same 

reference frame. Since the origin of the optical motion capture system was 

set parallel to the ground surface, we expected the y and z axis of both 

coordinate frames to be parallel, with z defining the direction of the gravity 

vector pointing towards the earth’s center. Hence, it was only necessary 

to compensate for the heading difference ψ' between the sensor’s x-axis 

(defined by the direction of the magnetic north) and the x-axis of the Vicon 

coordinate frame (pointing in arbitrary direction). At the beginning of each 

data trial, the athlete was asked to stand still for approximately two seconds 

after the sensor start. The initial orientation of all sensors was then estimated 

with an additional non-fusion vector-based orientation estimation method VB 

from the static pose. VB originally got developed in the context of spacecraft 

attitude determination as a variation to the popular QUEST algorithm that 

solves Whaba’s problem of determining attitude from magnetometer and 

accelerometer measurements only [24]. Here, attitude is represented as a 

combination of the rotational displacements around the three principal axes 

that can be determined by trigonometric correlations from field vectors in 

static environments under no external acceleration. Therefore, the algorithm 

is very useful to quickly estimate orientations under static positions as 

given in our initial sensor start condition. The initial estimates ensure the 

convergence of each algorithm’s states. Moreover, they could be used to 

determine the initial Euler headings ψ
s 
and ψ

c 
of both sensor and control 

system that were then computed out from the orientation estimates over all 

samples: in case that the pitch and roll values are identical, the quaternion 

product  S
Eqest,t ⊗ q*

ψs  with qψs  built from ψ
s 
 should be equal to the quaternion 

product   CEqgt,t  ⊗ q*
ψc with  qψc built from ψ

c 
.

ERMS∊  = √1
nΣ 

n

i=1 (∊gt,i −∊est,i)
2 .  

　　　　　　　　　　　　　　　　                 (9)
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4   Accuracies and Influences on the Estimates
　　For our evaluation, we had a look on the general angular accuracies of 

all estimation filters to identify eventual factors influencing the output filter 

performance.

4.1   Filter Settings

　　To get a good orientation estimation result, it was essential to choose 

appropriate settings for the noise values β in CF1, Kp and Ki in CF2 and 

wk in KF. In general, the accuracies of the fusion f ilters vary with the 

selected noise values and filter models, depending on how much influence 

on the overall estimate is granted to every sensor data type (respectively the 

correcting sensor observation data from accelerometer and magnetometer). 

To find reasonable f ilter settings, we first estimated the orientations of 

randomly selected data captures with all f ilters under various linearly 

increasing filter values. From their determined accuracies, we then identified 

three probable filter settings that were used to compute the accuracies over 

all motion takes: strong filter values β= 0.4, Kp= 1.0 with Ki = 0.01 and wk= 

0.07, medium filter values β = 0.15, Kp= 0.6 with Ki= 0.01 and wk= 0.04 

and weak filter values β= 0.05, Kp= 0.2 with Ki= 0.01 and wk= 0.01. Next, 

we determined changes in the error values for all respective fusion filter 

estimates in relation to the error value of the simple integrated orientation 

estimate qw obtained with Equation (1) and (2) designated as GI in the 

following. The idea for this comparison is that GI indirectly represents the 

quality of the gyro rate sensors: the better the sensors, the more accurate the 

integration and hence the better the accuracy values for the estimates from 

both GI and the fusion filters. The difference between the accuracy of GI 

and the accuracy of a more sophisticated fusion filter furthermore gives an 

idea about the effect and impact of the fusion filter with the chosen settings. 

This difference was described as relative change RC between the error values 

ERMS,BV of the fusion filter estimates to the error value ERMS,GI of the base error 
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RCTV  = 
ERMS,T − ERMS,GI         　　　　　　　　　　　　　　　　　　　              (10)

ERMS,GI
.

values from GI as

At every frame i in a motion take, the RC for KF is for example defined as

　　　　　　　　　　　Based on the mean over the RC values for all 

database motion takes and sensors, we finally chose those filter values that 

generated the smallest and hence best relative changes on average for the 

following investigations. These were β= 0.05, Kp= 0.2 and wk= 0.01 (Figure 5).

　　It is important to note that this choice made on average results did 

not constitute an absolute selection of the best possible filter values for 

all individual data takes. Better filter values might have been found under 

extensive experimentation and computation, as well as by using the specific 

sensor noise values for every individual sensor in the filter methods: huge 

differences already existed in the accuracies of the pure GI estimates among 

different sensors and rotation axes. The estimates for the sensor attached 

to rT for example suffered from little drift only and always yielded higher 

accuracies than estimates from other sensors (e.g. attached to rS and rF). 

Swapping sensors, the accuracy of the sensor estimate previously attached to 

rT remained better, so that the differences were likely to stem from technical 

differences in the sensor or insufficient sensor calibration. The chosen filter 

RCKF = 
(ERMS,K,F,i − ERMS,GI,i)  

 .
 　　

　　　　　　　　　　
ERMS,GI,i

Figure 5  Changes in the error values ERMS for the fusion filters in relation to the 
error values ERMS for the simple GI estimates (here depicted as base value 
0). Left: strong filter values. Middle: medium filter values. Right: weak 
filter values β= 0.05 for CF1, Kp= 0.2, Ki= 0.01 for CF2 and wk= 0.01 for 
KF and their mean relative change values RC.
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values might then not be equally suitable for all sensor estimates in such 

a case: in concrete, the KF filter value wk= 0.07 achieved more accurate 

estimates for the higher noise sensors than wk= 0.01, but on the other hand 

significantly reduced accuracy of the lower noise sensor estimates. In this 

respect, positive (denoting a change for worse) or small RC values did 

not necessarily proof a malfunction of the implemented methods but only 

represented the average value over all takes.

4.2   Gyroscope Drift

　　Estimation accuracies improved by use of the fusion f ilters in 

comparison to GI. However, the obtained estimates were still subject to errors 

induced by sensor noise and could not be considered absolutely correct: as 

explained at the end of Chapter 1, the sensor data should be calibrated well 

to reduce possible sources of error on the data and to obtain a high accuracy 

in the orientation estimates. One of the main problems one otherwise 

encounters in the orientation estimation is drift that evolves from white noise 

in the gyro rate sensor readings and that cannot be controlled as a constant 

offset - even tiny deviations from the underlying raw sensor data like very 

small oscillations around a sensor’s reading in rest are significantly enhanced 

in the integration process. Considering the extensive calibration processes 

carried out for the removal of all hardware-specific sensor errors made in [10], 

one could expect the drift to be variate under the respective unrefined base 

accuracy of every sensor module in case of an insufficient calibration. 

　　Indeed, we found big differences in the mean error values in quaternion 

difference and angle for the selected filter values for two different sensors 

and sensor locations (Table 1). For example, one could see that CF2 offered 

the best estimates for jumping at both P and rS as well as jumping jacks at rS, 

but not at P where both CF1 and KF performed much better under the same 

filter settings. Especially the mean angular error values ERMS∊ describing the 

amount of the error per motion axis appeared variate over its elements.
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Table 1   Mean error values of CF1, CF2 and KF for the orientation estimates at the 
pelvis P and an extremity E (right shank or arm) with kicking, jumping and 
right-handed throwing.

Filter Motion ERMS P   ERMS∊P ERMS E ERMS∊ E

CF1 Kicking 0.0286 [0.098,0.073,0.263] 0.1195 [0.457,0.207,0.337] 

CF1 Jump 0.0108 [0.170,0.083,0.049] 0.0452 [0.129,0.175,0.247] 

CF1 Jump & Turn 0.0404 [0.071,0.128,0.255] 0.0163 [0.041,0.062,0.181] 

CF1 Jumping Jacks 0.0163 [0.229,0.031,0.030] 0.1152 [0.198,0.257,0.398] 

CF1 Throwing 0.0036 [0.053,0.059,0.056] 0.1588 [0.554,0.250,0.490]  

CF2 Kicking 0.0275 [0.097,0.072,0.259] 0.1192 [0.452,0.200,0.336] 

CF2 Jump 0.0231 [0.255,0.046,0.089] 0.0288 [0.115,0.167,0.216] 

CF2 Jump & Turn 0.0404 [0.072,0.13,0.230] 0.0184 [0.093,0.063,0.196] 

CF2 Jumping Jacks 0.0896 [0.479,0.038,0.235] 0.099 [0.087,0.281,0.351] 

CF2 Throwing 0.0039 [0.054,0.063,0.062] 0.1481 [0.529,0.242,0.441] 

KF Kicking 0.2022 [0.088,0.072,0.695] 0.1315 [0.477,0.224,0.403] 

KF Jump 0.0423 [0.234,0.040,0.234] 0.1183 [0.168,0.322,0.285] 

KF Jump & Turn 0.1716 [0.144,0.205,0.612] 0.0441 [0.170,0.199,0.201] 

KF Jumping Jacks 0.0318 [0.176,0.040,0.244] 0.1366 [0.164,0.267,0.453] 

KF Throwing 0.0412 [0.088,0.075,0.324] 0.4901 [0.668,0.371,0.969] 

　　To the human eye, drift is especially obvious when creating a linear 

error accumulation in the orientation estimates. From Equation (4) and 

Equation (5), we have seen that CF2 and KF already include an error 

measure for the sensor noise induced drift. However, the obtained accuracy 

values showed that this internal drift compensation was not suff icient 

to equally remove the drift from the sensor signal of all data captures 

respectively of all motion types. For the present data, drift was especially 

large at the lower extremity, which suffered from quickly increasing 

deviations between the estimated and the ground truth angular changes 

over time. Examples of a high error measure ERMS∊ along a rotational axis 

are the pitchθestimates during jumping (rope skipping) and jumping jacks 

at P (Figure 6 bottom row). For the same sensor (meaning the same basic 

hardware noise), the estimates remained within 5 degree accuracy over 

the complete length of the data capture during other motion types like for 
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example throwing and kicking (Figure 6 top row) on the other hand. Here, 

the error measure ERMS∊ along the y-axis representing the pitchθwas small. 

Those characteristics were independent of the implemented filter types, and 

should therefore be further investigated in the next step.

4.2.1   Angular Velocities

　　Considering the differences and commonalities within the variate 

motion types for different sensors and sensor placements, we could identify 

the maximal amount of angular velocity within a motion as one characteristic 

difference that could impact the estimation accuracy. For every motion 

pattern, different body segments underwent different angular velocities 

(Table 2). Angular velocities during a kicking motion for example were 

much higher at the outer lower extremities than around the body center. In 

the same way, high rotational movement occurred at the right arm in a right-

handed throwing motion, whereas less rotational movement occurred at the 

Figure 6  Estimates for angular changes along one motion axis during a sequence 
of continuous motions with CF1, CF2 and KF to the ground truth 
orientation determined from optical camera data. Upper row: estimates 
for pitchθin throwing and kicking at P with small ERMSθ. Bottom row: 
estimates for pitchθ in jumping (rope skipping) and jumping jacks at P 
with high ERMSθ. 
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left arm and the relatively static legs. For all database captures and estimation 

methods, we could observe that the estimates for a body segment that was 

not exposed to high angular velocities were of better general accuracy than 

the estimates for a body part that underwent higher angular velocities. For 

example, the estimates for P of low speed were of general smaller error 

value than the estimates for sensors at extremities undergoing higher speed 

motions (shown for P and rS or rA in Table 1 and Table 2). It was therefore 

reasonable to conclude that varying angular velocities between different 

motions influenced the f ilter performance. Considering that orientation 

estimation filters are generally designed for slow motions like walking and 

gait analysis where all sensors are exposed to low angular velocities only, 

such finding would not be particularly surprising.

　　To test for such speed dependencies in the following, we built three 

semantic groups low speed, medium speed and high speed rotational 

movement under consideration of the general sensor specifications by the 

threshold ranges thlm= ±400 dps and thmh= ±800 dps. Every sensor data was 

then assigned to one of the respective groups with respect to the rounded 

measured maximal angular velocity averaged over all three motion axes. 

Body parts that were exposed to rotational movement of equal or less than 

±400 dps in average were classified as low speed, body parts exposed to 

rotational movement between ±400 dps and ±800 dps in average as medium 

Table 2   Rounded mean maximal x, y, z angular velocities (AV) in dps at the pelvis 
P and an extremity E (right shank or arm) with kicking, jumping and 
right-handed throwing and the rounded mean AV in dps leading to their 
classification.

Motion  AV P max/mean Classif.  AV E max/mean  Classif.

Kicking [209,367,212]/263 low [338,716,501]/518 medium

Jump [250,565,133]/316 low [529,925,480]/645 medium

Jump & Turn [519,803,326]/549 medium [1011,1750,1101]/1287 high

Jumping Jacks [179,290,110]/193 low [458,762,494]/571 medium

Throwing [423,265,68]/252 low [935,1487,413]/945 high
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speed and any other as high speed motion (Figure 7). For the sensor attached 

to rA, jogging with a maximal angular velocity of less than thlm was for 

example classified as low speed motion. Jumping jacks with a maximal 

angular velocity of less than thmh were classified as medium speed motion 

and the throwing motion with angular velocities of more than thmh as high 

speed motion. Other body parts were not necessarily classified under the 

same motion speed. During throwing for example, P with a maximal angular 

velocity of wmax= 295 dps was annotated as low speed, while the legs with rS, 

and rT and lS and lT underwent medium angular velocities.

4.2.2   Motion Structure

　　Data visualizations for one single sensor furthermore brought us to the 

assumption that drift varied with respect to the structure of different motion 

patterns. Especially the principal motion axis, the amount of changes along 

a motion axis and the number of motion planes involved in a motion seemed 

to influence the progression of drift in the data. Data takes that for example 

contained motions in primarily one motion plane like the jumping motions 

seemed to suffer more from drift than data takes that contained motions with 

rotations around more than one motion axis like throwing or kicking (Figure 

6). Under the same filter values, accuracy of the estimates confirmed this 

Figure 7  Angular velocities at x (dotted), y (solid) and z (line) for three sample 
motion types jogging (left), jumping jacks (middle) and throwing (right) 
at rA in relation to the thresholds thlm at ±400dps and thmh at ±800 dps. 
According to the mean angular velocities, the sensor data was classified 
as low speed motion during jogging, as medium speed motion during 
jumping jacks and as high speed motion during throwing.
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observation. Particularly large drift occurred in those motion performances 

that were of continuous high frequency and positional changes, while not 

undergoing large angular velocities and angular changes over a longer 

time span. Besides, the larger the angular changes along a motion axis in 

a data take were, the better the accuracy estimate. One explanation for this 

behavior could be that white sensor noise remaining after an imperfect 

sensor calibration and leading to drift during the integration is automatically 

reduced with changing and varying motion directions by canceling out some 

of the accumulated noise.

5   Compensating Error Sources
　　We have seen that many variables influenced the resulting orientation 

estimates. Taking them into account during data processing, the estimates 

are more likely to be meaningful for a subsequent full-body kinematic 

motion analysis. Consequently, we next wanted to identify a way of error 

compensation.

　　Since the integration of the gyro rate measurements is the base for 

all orientation estimators, reducing the integration drift should also help to 

improve the overall accuracy of an orientation estimator. In a first step, we 

aimed to reduce as much drift as possible by adding a drift compensation to 

the angular velocity integration step. Various drift compensation approaches 

exist, we used a very simple one here: we assumed the sensor offset value 

to be varying around the zero value and respond to the resulting drift by 

subtracting an additional, small offset from the gyro rate sensor reading. 

First, we computed the drift di per frame i as multiplication between its 

angular velocities w i and a defined gyro rate bias (e.g. b = 0.05) with the 

respective sampling rate fs, whereas the gyro bias rate was a constant that 

included all possible sources of error like sensor noise, signal aliasing, 

quantization errors or variations caused by temperature differences. We then 

added the current drift di to the previous drift di-1. In the next computation 
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step, the new summed drift was subtracted from the consecutive angular 

velocities, and the influence of the sensor noise reduced. In this way, an 

accumulated drift (compensation) value was created over time, functioning as 

low pass filter and hence accounting to the temporal progression of drift. This 

simple compensation already reduced the linear accumulating drift errors in 

the orientation estimate visibly, even without using any sophisticated filter 

but only the simple integration of GI (Figure 8).

　　To evaluate the positive effects that can be achieved with the proposed 

drift compensation, we added it to the orientation estimates of the sample 

motions from Figure 6. The resulting accuracies from Figure 9 indicated 

that by using such simple and computationally cheap drift compensation 

on estimates considerably superimposed by drift (meaning estimates 

with a high ERMS∊ ), the orientation estimates could already be drastically 

improved. In those motions, the estimated orientations approached much 

closer to the ground truth data. However, it should however be emphasized 

that the drift compensation was not successful for the takes with little drift 

(meaning estimates with a small ERMS∊ ). In concrete, the effect of the drift 

compensation varied with the pre dominant amount of drift: while the mostly 

drift-free data captures (top row) could not even get improved by small b 

values, large b values were used for the drift exposed data captures (bottom 

row). This meant that for an efficient drift compensation, it was necessary 

Figure 8   Left: global ground truth pitch θ (solid), rollФ (dotted) and yawψ (line) 
in degree for a continuous sequence of jumping jacks at P undergoing 
low angular velocities. Middle: GI sensor estimates for the same motion 
building a linear accumulating drift error. Right: GI sensor estimates 
for the same motion with reduced drift using the proposed drift 
compensation.
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Figure 9  Orientation estimates for the same sample motion takes from Figure 6 with the 
additional drift compensation. Accuracy was tweaked efficiently for all filter 
methods in the takes with high ERMSθsuffering from large drift of the pitch θ, 
but drastically deteriorated for the takes with little drift and small ERMSθ .

to take into account the characteristics of the captured performances. It also 

meant that to be able to apply the drift compensation generically in real 

applications, it was necessary to find rules for the selection of applicable b 

values, ideally irrespective of the underlying filter type.

 5.1   Correlation with Motion Speeds

　　Drift was prevalent in low speed motions of little or medium angular 

velocities and could be reduced with a large gyro rate bias b. In this context, 

it is important to note that the same b value could reverse the positive effect 

of drift compensation in cases with already low drift rates. In particular, 

one has to take into account the fact that even within one motion, occurring 

angular velocities vary with every motion axis, depending on the motion 

type: the main motion direction in jumping jacks for example was up- and 

downwards, with high angular displacements around the global inclination 

axis and hence high angular velocities at the sensor axis aligned to the global 

coordinate system. Rotations around the extremities’ longitudinal axis on 
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the other hand were much smaller, resulting in less angular velocities at 

the respective sensor axis. Since b gets multiplied with the current angular 

velocities w i, a same value for b would have a much bigger effect on the 

compensation with the significantly higher angular velocity. This can even 

lead to negative compensation. Given a sample motion in which the pitchθ
around the sensor’s y-axis is especially affected by angular changes, its drift 

along the y-axis could be overcompensated and therefore reversed with a 

chosen bias rate value (Figure 10). In such cases, a better adaptation to the 

present motion data could be obtained with a different, smaller b value (e.g. 

b=0.02) as in Figure 10 right, where drift around y (and slightly around z) 

was reduced, while a stable estimate around x was maintained.

　　Because even within one motion, occurring angular velocities varied 

with every motion axis in dependence on the motion type, the bias rate 

should be defined as three-dimensional vectors with entries of different 

b-value that responded to the respective occurring motion characteristics. 

Assumptions on the prevalent angular velocities per sensor axis can 

generally be made from the biomechanical specifications of a motion. Here, 

however, it is necessary to know the approximate alignment between sensor 

axis and body segment bone growth directions. To design an universal drift 

reduction strategy from the previous observations, we built three different 

motion type categories dependent on the occurring angular velocities: 

Figure 10  Left: global pitchθ(solid), rollФ(dotted) and yawψ(line) GI estimates 
from the sensor data in degree for a continuous sequence of jumping 
jacks at rS undergoing high angular velocities with obvious drift. Middle: 
GI sensor estimates for the same motion with drift compensation under 
a high b-value. Right: GI sensor estimates for the same motion with drift 
compensation under a different, smaller b-value.
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Type L, Type M and Type H, whereas L stood for low speed motions, M 

for medium speed motions and H for high speed motions according to the 

definition of  thim  and thmh.

5.2   Correlation with Motion Structure

　　As second conclusion, we identified the drift to be stronger in motions 

with less rotation axes involved and less variations along all rotation axes. 

This observation meant that the effectivity of drift compensation values 

did not only depend on the angular velocities, but also on the general drift 

potential of every motion pattern. Sensor data from motions that were of 

generally fewer drift consequently did not require a high compensation 

value, even if only small angular velocities were measured by the gyro rate 

sensors. Therefore, we built two further categorization criteria referring to 

the discussed variations in the number of rotation axes involved within a 

motion. Motions around one principal rotation axes were classified as Type 1 

(designating high drift potential) and motions around more than one rotation 

axis as Type 2 (designating low drift potential).

5.3   Compensation Values

　　The previous categorizations f inally led to the six different bias 

compensation categories L1, M1 and H1 and L2, M2 and H2, whose values 

have been determined experimentally for the subsequent comparison. First, 

the sensor data of all data captures was annotated and assigned to one of 

the six respective categories. Every category was then tested under several 

probable bias rate values of linearly increasing distance, and the value of best 

average accuracy over all estimation filters per sensor category chosen. This 

brought us to the error values bl1= 0.05, bm1= 0.026 and bh1= 0.002 as well as 

bl2= 0.003, bm2= 0.001 and bh2= -0.001.
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6   Results
　　To verify the proposed strategy and to point out its changes on the 

overall accuracy values, we compared accuracies in relation with each other 

in the next step. In all computations, the initial difference between estimate 

and ground truth remained the same, so that just the drift and accumulating 

errors over time were evaluated.

6.1   Accuracy Measurements

　　First, we wanted to look at the general effects of the additional drift 

compensation in relation to the introduced motion categories. For this, 

we compared the ERMS for the orientation estimates of pure GI estimates 

with the ERMS for the orientation estimates with the proposed varying drift 

compensation rates under the previously defined six motion types L1, L2, 

M1, M2, H1 and H2.

　　Figure 11 visualizes the accuracy changes of the additional drift 

compensation relative to the uncompensated GI estimates averaged over 

all body segments and data takes. We could see that the drift compensation 

worked well when appropriately put into context to the motion type and 

bias rate values. It was obvious that accuracy was especially increased for 

Type 1 motions that were suffering from larger drift (meaning motions 

categorized as L1 and M1), and that additional drift compensation was not 

recommendable for Type 2 motions of high angular velocities (meaning 

motions categorized as M2 and H2) under the generalized gyro bias rate 

values: for low speed motions of type 1, as for example P in jumping or the 

thighs in throwing, the average relative change was very good with the bl1 

bias rate filter value. In those cases, drift was dominant along certain motion 

axes (as in the example shown in Figure 6), but could be efficiently reduced 

to a large extend with the compensation. Similar relative changes RCm1 

were obtained for medium speed motions, as for example the extremities 

in jumping. We concluded that the drift that arouse as a result of missing 
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variation in the rotational axes had a much bigger effect on the estimates 

as the motion speed. The amount of angular velocities mainly had an 

influencing effect on type 2 motions, where drift was generally smaller. It 

furthermore became obvious that accuracy values did not notably improve 

with drift compensation for high speed motions and even deteriorated for 

most motions of Type 2 when the chosen bias compensation value was not 

ideal. For those annotations, it was more difficult to find effective bias values 

than for Type 1 low and medium speed motions, since the effect of the bias 

rate on the overall estimates was higher: already small changes in the b value 

could turn an appropriate drift compensation into an overcompensating value 

Figure 11 Top: graph visualization of the change in ERMS for the drift compensated GI 
estimates relative to the uncompensated GI estimates with the presented different 
rate bias values under a logarithmic scale. Color saturation within every motion 
category represents the different bias rate values (from little saturation for bl1 to 
high saturation for bh2). Bottom: matrix visualization of the relative change in ERMS 
for the drift compensated GI estimates to the uncompensated GI estimates with 
the presented different rate bias values under a logarithmic scale.
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or vice versa. Especially H2 motions were difficult to drift compensate. This 

however conformed to our previous results and we could note that the chosen 

bias rate values matched with our assumptions, so that improvements were 

achieved in most cases.

6.2   Adaptive Two-Step Filter

　　Since we only verif ied the GI method, the error values from the 

previous evaluation were relatively high with an average non drift-

compensated GI error value of 0.1472. Next, our strategy should therefore 

be examined for the implemented fusion f ilters. Under the previous 

observations, we added the same adaptive drift compensation strategy as 

extra filter step to the orientation estimation of all three fusion filter types. 

The idea was that drift should get compensated better when respecting 

the prevalent motion characteristics, so that the fundamental filter settings 

would not need to be adjusted by the user in future applications. In the case 

of a mobile training application this could for example mean that a target 

motion is simply annotated before the motion performance with respect to 

its angular velocities and motion dimensions. The program’s filter values 

and drift compensation could then be automatically adapted according to the 

annotations and pre-defined motion specifications, and the estimation filter 

be universally used for all motion patterns. In a more ubiquitous scenario, 

the filter values could furthermore change dynamically under the currently 

measured angular velocities, taking into account also sudden phases of high 

impact or angular changes of body parts. As a result, the accuracy values of 

orientation estimates are improved on an individual basis for every specific 

sport motion performance, while it is not required to individually change the 

fundamental setting.

　　To evaluate the flexible two-step drift compensation, we lastly examined 

the effects that were achieved by using the flexible filter in relation to no drift 

compensation with ERMS for GI and CF1, CF2 and KF. Our accuracy metrics 



Intelligent Drift Reduction in Inertial Sensor Orientation Estimates Using Elementary Motion Knowledge

KEIO SFC JOURNAL Vol.16 No.1 2016

197

showed that especially in motions where high drift was likely to occur, 

such as type L1 or M1 motions, the additional flexible drift compensation 

could significantly enhance the fusion filter results: using no additional drift 

compensation, the average relative changes for the ERMS error measure of the 

fusion filters to the error measure with GI of an error of 0.6975 were RCCF1= 

-0.6508 for CF1, RCCF2= -0.5981 for CF2 and RCKF= -0.0326 for KF. Using 

the additional two step drift compensation improved the relative changes to 

RCCF1= -0.6687, RCCF2= -0.6975 and RCKF= -0.6358. Especially for KF we 

could achieve much better accuracies, which was due to the chosen general 

filter values that were not ideal for all of the processed sensor data. Under 

H2 motion types, where it was difficult to predict and compensate drift, we 

abstained from additional drift-compensation and used only the fundamental 

fusion filter algorithm. This enhanced the estimates by an average relative 

change to GI of RCCF1= -0.4668, RCCF2= -0.4933 and RCKF= -0.1473.

　　Furthermore, we compared the identical adaptive drift compensation 

with a simple, f ixed bias rate value (Figure 12), whereas b was chosen 

as the mean between all six values of the flexible strategy here and set to 

b=0.0135. As it is clearly visible, the additional drift compensation increased 

accuracy and performance of the filter design among all of the investigated 

estimation filters in comparison to the averaged ERMS error values without 

drift compensation. Furthermore, it became clear that the flexible filter 

Figure 12  ERMS error values averaged over all motion takes and sensor locations 
for GI, CF1, CF2 and KF without drift compensation (left), with drift 
compensation of a simple fixed value (middle) and with the proposed 
flexible drift compensation (right).
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values addressed and reduced the drift effects much better than the fixed 

bias rate value. One could even see that the estimators with additional fixed 

value compensation did not perform better than the conventional filter design 

without any additional drift compensation. This degradation in accuracy is 

caused because no ideal b value was set respecting all different motion types. 

As a result, we could state that it is reasonable to extend the filter design by 

the proposed drift compensator, when the flexible strategy that respects a 

motion’s innate drift potential is employed. Then, the general applicability of 

orientation estimation methods can be improved, independently of the chosen 

fusion filter algorithm.

　　Besides, the computed accuracies show that the proposed filter adaptations 

generated orientation estimates of sufficiently high quality under the chosen 

filter values. Highest accuracies that could for example be obtained with the 

chosen filter values for L1 type motions were 0.0107, or [0.1303,0.0362,0.0234] 

rad with ERMS∊ for CF1, 0.0046 or [0.0403,0.0370,0.0484] rad for CF2 and 

0.0115 or [0.0309,0.0525,0.0684] rad for KF.

6.3   Filter Dependence

　　From Table 1, we have seen that the performance of the different fusion 

filters varied with the motion data type. Given the previous results, it was 

also reasonable to expect every filter design to perform differently well with 

specific motion types. Based on the computed changes RCKF and RCCF2 

in ERMS relative to GI, we came to the results that under the chosen filter 

settings, KF was especially useful for body segments of mainly small motion 

speed with an average relative change of RCKF= -0.7843 (independently of 

quick phases of high impact that can be compensated by the filter design). 

CF2 on the other hand offered particularly high accuracy for motions 

and body segments that constantly reached high angular velocities with 

an average relative change of RCCF2= -0.7725. CF1 offered performance 

improvements in all cases, but always yields accuracies below CF2. 
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Consequently, we recommend to use CF2 in the respective cases, which 

constitutes the simpler method from an algorithmic perspective.

7   Conclusion and Future Work
　　This study gave an overlook on the use of different popular orientation 

estimation methods for sport applications under the focus of non-commercial 

and individually build motion measurement devices. Different processes 

and factors that influence the accuracy of attitude estimators in the presence 

of varying dynamic target motions were identified and analyzed. The most 

prevalent factor here was drift that generally occurs as a result of accumulated 

variate sensor noise. We have shown that drift varied in dependence on 

the performed motions, their occurring angular velocities, the number of 

rotation axes involved and the amount of external acceleration acting on the 

measurement sensors. General strategies to enhance the performance and 

accuracy of different orientation estimation methods compensate the drift by a 

pre-defined fixed value. This is also the case for the implemented fusion filters 

with their internal drift compensation. We showed that it is recommendable to 

employ an extra computation step that enhances the estimates with respect to 

their motion characteristics: considering simple elementary motion knowledge 

like the amount of angular velocities and motion dimensionality, the common 

drift compensation can be adapted well to the expected amount of drift per 

motion, and the accuracy be enhanced considerably.

　　In general, it appeared sensible to use a flexible system that adapts to the 

specific motions of an intended kinematic motion analysis without imposing 

the need to change the fundamental system parameters. By changing the drift 

compensation values under consideration of the approximate average angular 

velocities and motion structure, a better, more accurate and significant motion 

feedback can be provided. The following conclusions shall be particularly 

emphasized in this respect from the measurements and observations of the 

present work:
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(1) Motions that undergo high angular velocities over several dimensions 

suffer from significantly less drift than monotonous motion patterns 

of low angular velocities. 

(2) Additional drift compensation in form of an adaptive two-step filter 

can significantly improve the accuracies of the estimates independently 

of the chosen filter design. Here, it is useful to introduce various fixed 

drift compensation values that can be used in a flexible way under 

consideration of previously annotated motion types.

(3) Analyzed motion types should be annotated with respect to the 

amount of rotational axes involved and the expected maximal angular 

velocities, ideally before the main motion analysis task: both factors 

considerably influence and change the general accuracy values, 

whereas the amount of rotational axes involved had a bigger impact 

on the data here. Biomechanical knowledge of the performed motion 

and its principal axes is useful to further advance and automatize the 

data processing from inertial measurement units, whereas it is also 

possible to retrieve the fundamental information from the user by a 

user interface or text input.

(4) Differences in the individual sensor specifications lead to variations 

in the amount of drift per sensor: to handle those fundamental 

differences, we recommend to investigate each sensor’s behavior in a 

pre-study and then use different filter values under consideration of 

a sensor’s internal drift. Ideally, hardware specific differences should 

then also be included in the measures, or either taken into account in 

the experimental setup.

(5) Different estimators are better suited for different motion types: 

the Kalman Filter is especially useful for motions of small angular 

velocities and few variations on the angular rotations, while the 

Complementary Filter works especially well with motions of constant 

high angular velocities.
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　　We believe that the proposed additional filter with speed and motion 

axis dependent f ilter values is a reasonable tool to enforce the further 

enhancement of orientation estimates in sport motions. The successful 

implementation of a generic and universally applicable estimation filter is 

a key factor for the future use of inertial sensors in motion performance 

scenarios. Providing a simple use for any kind of system users, the designed 

drift compensation strategy consequently presents valuable information for 

the derivation of kinematic motion data from inertial sensors: by refining 

the estimates while maintaining simplicity and ubiquity of the processing 

filters at the same time, it should be possible to ensure more sophisticated 

data analysis applications and software tools in future. Especially for training 

applications in mobile devices, where conventional commercial systems 

cannot be used, and under imperfect or incomplete sensor calibration, the 

method appears to be useful.

　　The next step would be to flexibly use filter values within one single 

motion performance. This means that for every frame the angular velocity is 

exceeding a certain defined threshold value (and hence entering a different 

class of motion speed), other filter values would be used for the orientation 

computation step. By that, the filter can adapt itself to the characteristics 

of a specific motion type, so that the most accurate motion information is 

displayed in dependence of the respective sport and motion type. Then, it 

might furthermore become possible to better react and adapt to short phases 

of high impact that cannot yet be depicted well by the fusion filters. 

　　The proposed flexible drift compensation method is used in several 

sports and for varying movement tasks in the following, such as intelligent 

and automated motion processing for ubiquitous and mobile training 

applications, making inertial sensors step by step a fundamental tool in 

sports training and motion analysis.
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