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　近年のシステムバイオロジーの取り組みによって、これまでの静的な因果関
係では分かり得なかった複雑性が明らかとなっている。我々は、新規ネットワー
クやグローバルな応答の特性を明らかにするために、細胞の動的な振る舞いに
着目した。免疫応答やガン、そして胚発生に関わる有益な細胞のシグナル伝達
とハイスループットな転写全体の振る舞いを研究した。そこで我々の成果に
よって、細胞集団の振る舞いは、線形応答のルールを用いる事でモデル化でき、
決定論的なシグナルである事を示した。そしてこれらのルールを用いて、新規
のシグナル伝達の特性及び、炎症反応やガンの応答をコントロールするための
鍵となるターゲットをコンピューターで予測し、実験的に立証した。さらに、マ
クロファージによる免疫応答、及び卵母細胞から胚盤胞までの 1 細胞の胚発生
の過程をトランスクリプトームの観点から統計解析した結果、低発現している
遺伝子が役割を持っているという興味深い全体のパターンを明らかにした。
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　　The recent systems biology efforts are revealing complexities beyond 
traditional static causal relationship understanding. Our research has focused on 
dynamic cellular behaviors to uncover novel network and global response properties. 
We investigated instructive cell signaling and high-throughput transcriptome-wide 
behaviors of immune, cancer, and embryonic development cells. Our data reveal 
that cultured populations display deterministic signaling that can be modeled using 
linear response rules. Adopting the rules, we have computationally predicted and 
verified experimentally novel signaling features and key targets for controlling 
proinflammatory and cancer responses. In addition, our transcriptome-wide 
statistical analyses of macrophage immune response and single cell embryonic 
developmental process, from oocyte to blastocysts cell stage differentiation, revealed 
interesting global patterns where even lowly expressed genes play a role. 
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1   Introduction
　　Living organisms are highly complex dynamical systems that are 
able to survive, proliferate, and evolve under variable conditions for 
thousands, if not, billions of years. Over their evolutionary period, 
each living species has been able to detect, process, respond, and 
adapt to different environmental information. The immune system is 
one such mechanism by which living systems are able to neutralize 
potential threats by detecting external agents and invoking appropriate 
intracellular response for protection. Living systems are not only able 
to defend themselves individually, in many instances they are able to 
pool together, or self-organize, to protect the entire population. Thus, 
they are not only complex within their own physiology, but are also 
sophisticated in their dynamical cooperative behavior in adaptation to 
their surroundings.
　　For the past decade, our research has been focused on 
understanding the complex and dynamic perturbation-response of 
cellular systems. In particular, we have centred on cell signaling or 
the tracking of extracellular stimuli affecting numerous intracellular 
molecules to trigger the transcription of genes for myriad cellular 
processes such as differentiation, proinflammatory response and 
apoptosis. These processes are vital to investigate as they not only 
provide understanding of the normal functioning of living cells, but may 
also provide clues on disease occurrence or targets for disease control. 
　　In this paper, I will discuss our research, adopting systems 
biology approaches, to understand and tackle proinflammatory 
responses of the immune and cancer cells, and shed some insights 
into the complexities of embryonic stem cell differentiation. Our 
strategy involves utilizing mathematical, computational, and statistical 
approaches to analyse dynamical cellular datasets, from low-
throughput western-blot, enzyme-linked immunosorbent assay (ELISA) 
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or electrophoretic mobility shift assay (EMSA) readouts, to high-
throughput gene expression profiles derived from DNA microarrays 
and next generation (RNA) sequencing techniques. Using cross-
disciplinary approaches, our aims were to better understand complex 
network behaviors and their governing principles, and using the 
derived knowledge to systemically determine novel targets for more 
optimal regulated response. In the following sections, I will provide 
details of our goals and achievements.

2   Cell Signaling in Immune Response and Cancer
　　Immune diseases and cancer deaths still remain a major global 
challenge affecting people from all walks of life. Despite the vast 
amount of time, efforts and funds put to challenge the diseases world-
wide, medical treatments remain suboptimal and are largely unchanged 
over the past 40 years. To tackle some of the difficulties facing 
current research, we undertook an integrative, multidisciplinary 
approach for investigating the mammalian innate immune response and 
its link to cancer.

3   Uncovering Novel Features in Toll-like Receptor Signaling
　　We initially, about a decade ago, began our research on the 
innate immune response invoked by the Toll-like receptors (TLRs). 
TLRs are transmembrane proteins that function to recognize 
conserved pathogen-associated molecular patterns (PAMPs) related 
to microorganisms, such as lipopolysaccharide (LPS) from gram-
negative bacteria and double-stranded RNA (dsRNA) from viruses. 
There are 13 known members of the TLRs in mammals. TLRs 1, 2, 
4, 5, 6 are located at cell surface, while TLRs 3, 7, 8, 9, 11, 13 are 
bound to the intracellular endosomes [1]. Each TLR recognizes specific 
PAMPs and trigger microbial clearance and induce the production 
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of immunoregulatory chemokines, cytokines, and cell surface and 
costimulatory molecules. The TLRs also increase effector functions 
such as phagocytosis, and present antigen to adaptive immune cells [1]. 
Thus, the activation of TLRs is a first line of mammalian’s immune 
defense system. 
　　The most well characterized PAMP is the TLR4. Upon LPS 
binding, TLR4 triggers two major intracellular pathways, the 
MyD88- and TRAM- dependent pathways. The MyD88-dependent 
pathway mainly induces proinflammatory cytokines such as TNF, IL-
6, and SOCS3 through activation of MAP kinases p38, ERK, JNK 
and NF-κB [2]. The TRAM-dependent pathway, on the other hand, 
predominantly induces type I interferons (IFNs) and chemokines such 
as IP-10 (encoded by Cxcl10) and interferon (IFN)-induced proteins 
through activation of IRF -3 or -7 and NF-κB. Thus, both pathways 
complement each other in the production of pro-inflammatory 
mediators. Although there are detailed experimental works on 
TLR4 signaling, the dynamical response of the MyD88- and TRAM-
dependent pathways remained poorly understood. 
　　We investigated the TLR4 response [3] in wildtype and several 
mutant conditions using a computational model based on the 
perturbation-response approach (Box 1), followed by experimental 
verification. Our initial task was to investigate molecular mechanisms 
for the impaired and delayed kinetics of NF-κB activation in MyD88 
knock-out (KO) murine macrophages [4]. According to our modeling 
approach, the impairment was due to lower signaling flux (affinity) 
towards the TRAM-dependent pathway, compared with MyD88-
dependent pathway, in LPS stimulation and the delay in NF-κB was 
due to several unknown signaling intermediates or process acting 
upstream of TBK in the TRAM-dependent pathways (Fig. 1A). In 
addition to these, the model also predicted delayed induction of TNF 
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and enhanced expression of Cxcl10 in MyD88 KOs (Fig. 1B).
　　To validate the model predictions, we subsequently performed 
experiments on murine macrophages [5]. Firstly, we proved the delayed 
induction of Tnf and enhanced expression of Cxcl10 in MyD88 KO 
murine macrophages (Fig. 1C). Next, we showed the mechanism for 
the enhanced activation of Cxcl10 in MyD88 KOs is due to signaling 

flux redistribution or SFR (Fig. 1D). The experiment also proved the 
point of lower signaling flux (affinity) towards the TRAM-dependent 
pathways in the absence of MyD88, when TRAM preferentially bound 
to intracellular TLR4 domain (Fig. 1E). Notably, the speculation 
that the TRAM-dependent pathway consisted of additional signaling 
intermediates or processes was confirmed by later studies, 
demonstrated by the sequential activation of CD14, ITAM-mediated 
process of tyrosine kinase Syk and its downstream effector PLCγ2 for 
the endocytosis of TLR4 prior to TRIF/TRAM activation [6, 7], and the 
phosphorylation of TRAM by PKCε for IRF-3 activation [8]. 

4   Systems Biology to Regulate TNF Signaling
　　Following the successful prediction and validation of our TLR4 
model, we next embarked on studying the tumor necrosis factor (TNF) 
signaling. As noted above, TNF is one of the key cytokine induced by 
the proinflammatory response of TLR4. TNF, which is also produced 
by various other signaling cascades, plays a major role in regulating 
myriad cellular processes [9]. Chronically elevated levels of TNF 
have led to several major illnesses including rheumatoid arthritis and 
certain types of cancers [10, 11]. 
　　We embarked on the development of a new TNF signaling model, 
and using the model intended to find a key optimal target that will 
selectively and effectively suppress, but not abolish, TNF-induced 
proinflammatory response [12]. This is because, total abolishment of 
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TNF response will immuno-compromise subjects to pathogenic threats.
　　First, we curated the literature and theoretically derived the 
TNF signaling topology (Fig. 2A, black arrows). A dynamic mass-
action model (Box 1) was developed based on this topology with 
parameter values chosen to fit the temporal profiles of p38 and IκBα
a in wildtype and several mutant conditions (Fig. 2B). Subsequently, 
we extended the model to simulate 3 major groups of upregulated 
proinflammatory genes in TNF stimulation (Fig. 2C). 
　　It is important to emphasize that our computational models 
fitted to the wildtype experimental data often failed to recapture 

Figure 1 　(A) Schematic of  TLR4 signaling with modif ied topology (grey ar rows) 
including novel intermediates. Dynamic computational simulations (B) and experimental 
expression (C) of  Tn f  (top) and C xcl10 (bottom) genes in wildtype (black) and MyD88 
KO (dotted grey). (D) Signaling f lux redistribution (SFR) is a theoretical hypothesis that 
suggests removing or suppressing signaling molecules (MyD88) at pathway junction will 
enhance the activations of  molecules at alternative (TRAM-dependent) pathways, and vice 
versa, through the law of  signaling f lux conservation. (E) Experimental evidence for SF R: 
Increasing MyD88 (aMyc) reduces TRAM (aFlag) binding to TLR4 (GST) using in vitro 
competition assay. Figure modif ied f rom [5].

Fig. 1(D) Fig. 1(E)
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profiles in mutant conditions [1, 13-16]. The main reason for this, to our 
knowledge, is the general lack of detailed network information of our 
signaling topologies. To overcome this limitation, we have developed 
9 response rules that will help guide us to correct any grossly missing 
information. Note that our works, and that of others in related 
studies, have demonstrated that biological networks are often sensitive 
to network topology rather than parameter values [1, 16-18]. Hence, the 
use of response rules (Box 2) to modify and re-investigate signaling 
topologies is an appropriate next step.
　　For the TNF signaling, although our model was able to fit both 

Fig. 2(A)
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Fig. 2(B)

Fig. 2(C) Fig. 2(D) Fig. 2(E)

Fig. 2(F)
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Figure 2　(A) Schematic of  TNF signaling with modif ied novel feedback mechanisms in grey 
arrows. (B) Temporal experimental prof iles (lef t) and dynamic computational simulations (right) 
of  IκBα (top) and p38 (bottom) activity in wildtype (black) and various KO conditions (colors). 
(C) Average expression prof iles of  genes in groups I (red), II (green), and III (blue) in 3T3 
f ibroblasts stimulated with TNF. Simulation prof iles of  the 3 groups of  genes using initial TNF 
model (D) and modif ied model (E) with transcriptional delay and novel feedback mechanisms 
(solid lines) or with transcriptional delay and without feedback mechanisms (dotted lines). (F) 
Simulation prof iles of  the 3 groups of  genes in wildtype and 3 key KO conditions (IκBα KO, 
RIP1 KO, and TAK1 complex KO) using the modif ied model with feedback (note that for all 
other KO simulations, see [12] for details). (G) Temporal gene expressions of  groups I (Tn f ai3p, 
Il6, Jun, N f kbia), II (Ccl7, Vcam1, Cxcl10), and III (Mmp3, Mmp13, Enpp2) genes in TNF-
stimulated BALB/3T3 (top) and MEF (bottom) cells, treated without (dark color) and with (light 
color) Nec-1. (A) reproduced f rom [40] and (B -G) adapted f rom [12].

Fig. 2(G)
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p38 and IκBα in wildtype and several mutant conditions, when the 
model was extended to simulate gene expressions, the wildtype model 
was insufficient to fit group 3 gene profile: the simulation clearly 
underestimated the transcription levels after 2 h (Fig. 2D). According 
to our response rules (Rules 2 & 4, Box 2), a post-transcriptional 
feedback mechanism, specifically to IkappaB-alpha, is required for the 
continuous activation of group 3 genes. Adding this hypothesis to the 
model resulted in significant improvement to the dynamical simulations 
(Fig. 2E).
　　Next, we tested, in silico, the effect of down-regulating all 
signaling proteins in the TNF topology for controlling the expression 
of the 3 major groups of proinflammatory genes which are usually 
upregulated in proinflammatory diseases. Among the data, we found 
RIP1 knock down (KD) simulations produced moderate regulations of 
all 3 groups of genes (Fig. 2F). This data indicated that RIP1 may 
be an attractive target for controlling TNF-induced proinflammatory 
response. Hence, to validate this important result, which may provide 
significant benefit for proinflammatory therapeutics, we performed 
actual experiments on 2 cell types (MEF and 3T3).
　　Necrostatin-1, or Nec-1, is a well-known specific inhibitor 
of RIP1 [19]. We compared 10 proinflammatory gene expressions in 
MEF and 3T3 cells stimulated with TNF, with and without Nec-1 
pretreatment (Fig. 2G). The experimental results confirmed our model 
simulations, and also demonstrated that Nec-1 could potentially be 
used to treat proinflammatory diseases such as rheumatoid arthritis 
or osteoarthritis.

5   Enhancing Apoptosis by Tinkering TRAIL Signaling
　　Cancer cells are highly variable and largely resistant to 
therapeutic intervention. The TNF-related apoptosis-inducing ligand 
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(TRAIL) induces apoptosis in malignant cells, while leaving other cells 
mostly unharmed. However, several carcinomas remain resistant to 
TRAIL [1]. To investigate the resistance mechanisms in TRAIL-stimulated 
human fibrosarcoma (HT1080) cells, we developed a computational model 
to analyze the temporal activation profiles of cell survival (IκB, JNK, p38) 
and apoptotic (caspase-8 and -3) molecules in wildtype and several (FADD, 
RIP1, TRAF2 and caspase-8) KD conditions [20].
　　Our initial model was based on the well-known TRAIL signaling 
(Fig. 3A-2, black arrows). Similarly to our TLR4 and TNF works, the 
initial computational TRAIL model could only fit the wildtype dynamical 
activation profiles of the 5 signaling molecules (IκB, JNK, p38, caspase-8, 
and caspase-3), and failed to match mutant conditions. Next, by carefully 
applying the response rules (Box 2), the TRAIL signaling topology was 
modified in silico step by step until all tested molecules matched the 4 
available mutant conditions (RIP1 KD, FADD KD, caspase-8 KD, and 
TRAF2 KD) (Fig. 3A-1). As a result, two novel molecules have been 
predicted by the revised model, i) molecule Y acting independent of FADD 
and able to activate JNK and p38, and ii) molecule Z specifically activating 
JNK via p62 (Fig. 3A).
　　Using the revised TRAIL model, we next investigated which of 
the two novel molecules is key to suppress cell survival activation or 
increase cell death pathway activity. Notably, the simulations suggested 
that knocking down molecule Z will significantly increase apoptosis and 
may result in 95% cell death (Fig. 3B). In other words, knocking down 
or inhibiting molecule Z in TRAIL-stimulated human fibrosarcoma will 
likely sensitize the large majority of resistant cells to death. To identify 
molecule Z, we performed a search on the protein-protein interaction 
database for p62 interacting partners, and obtained protein kinase C 
(PKC) family members as likely candidates. However, which PKC member 
might be molecule Z remained to be identified.
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　　Consequently, we utilized PKC inhibitor, bisindolylmaleimide I 
(BIM-I), to experimentally verify whether TRAIL-stimulated HT1080 
cells will indeed significantly induce apoptosis in the presence of PKC 
inhibition [21]. In addition to HT1080, we also tested another TRAIL-
resistant cancer cell, the human colon adenocarcinoma (HT29) cells. 
Notably, as predicted by the computational model, PKC inhibition 
during TRAIL stimulation produced over 95% cell death for both 
HT1080 and HT29 cells, with relatively insignificant effect on normal 
control TIG-1 and MRC5 cells (see Fig. 1 of ref. 21). These results 
confirmed our model simulations that a PKC family member is 
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Fig. 3
(A-2)

Fig. 3(B)

Fig. 3(C)

Figure 3　(A) Schematic of  TRAIL signaling with modif ied novel pathways in grey (A2), 
and simulation prof iles (curves) compared with experiments (shapes) of  p38, IκB, JNK, 
caspase-8 and -3 in wildtype, RIP1 KD, FADD KD, caspase-8 KD, and TRAF2 KD (lef t) 
f or TRAIL stimulated HT1080 cancer cells(A-1). (B) Survival ratios, experimental (dark 
grey) and evaluated based on simulations (light grey), f or all conditions including novel 
molecules Y  and Z  KD f or simulations. (C) Experimental survival ratios f or increasing 
levels of  TRAIL stimulation with and without increasing doses of  PKC inhibitor (BIM-I) 
in HT1080 cells. (A,B) taken f rom [20] and (C) adapted f rom [21].
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molecule Z, and its inhibition significantly sensitizes TRAIL-induced 
cell death (Fig. 3C).
　　Next, to identify which PKC member, among 10 known, is 
molecule Z, we tested all of them experimentally. Notably, we found 
that PKCδ siRNA produced the same amount of cell death at 3h 
compared with BIM-I treatment (see Fig. 4C of ref. 21). Thus, we 
concluded our study by revealing that specific PKCδ inhibition in 
TRAIL-based therapy has great prospects for malignant cancers that 
are resistant to TRAIL [21].
　　Overall, from our systems biology research of using dynamic 
computational modeling to identify novel cell signaling mechanisms 
or targets, and subsequently performing experiments to verify them 
in TLR4, TNF, and TRAIL signaling has been highly successful. 
We believe our modeling successes are not through “chance”, but 
demonstrate the presence of simple rules guiding complex behaviors 
through physical laws on a macroscopic top-down scale [1, 14, 22]. Our data 
provide further evidence for the utility of systemic approaches to tackle 
and treat complex diseases more effectively. In the following section, 
our other works on high-throughput omics data will be discussed.

6   Transcriptome-wide Analysis 
　　The previous sections on cell signaling were based on a limited 
set of signaling proteins and genes. Although the findings shown are 
promising, a living cell actually contains several thousands of genes, 
proteins, and metabolites. To grasp the complex large scale system-
level properties, the development and analysis of high-throughput 
experimental technologies for genomics, proteomics, and metabolomics 
are required. Over the last two decades, these methods have been 
intensively investigated, and today they generate large quantity of 
biological data at different scales crucial for unraveling the detailed 
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molecular composition and complexity of living organisms.  
　　For instance, what types or kinds of genes are induced by 
the immune cells in response to invading pathogens? In a study to 
investigate the dynamic response of innate immune cells (macrophages) 
exposed to pathogenic agents (LPS), cDNA microarrays revealed 
that almost 3000 genes were expressed over a period of 24 hours [23]. 
Apart from immune-related genes, genes belonging to diverse cellular 
processes were also expressed. Thus, the study was one of the first 
to show, from a global analysis, that a single receptor stimulation can 
result in the response of thousands of genes not directly related to 
the original function. Such valuable information suggests that high-
throughput analysis of biological components are crucial for providing 
another dimension (of scale) to the understanding of complex cell 
behaviors. 

7   Global Immune Response
　　From the second half of last decade, we have developed simple 
statistical techniques to investigate high-throughput gene expression 
dataset [24-30]. Instead of using arbitrary threshold cut-off to eliminate 
genes of very low expressions (or high signal-to-noise ratio), which 
often results in removing 90% of genome data, we used power-
law, correlation and noise approaches to analyze the entire global 
response patterns. Such statistical techniques have been widely 
used to investigate deterministic patterns of highly noisy data of 
other complex systems such as the weather [31], stock markets [32], and 
cosmology [33].
　　We examined the time-series genome-wide (22,690 Affymetrix-
based microarray probes) response of LPS stimulation (TLR4 
signaling) in wildtype and 3 mutant conditions (MyD88 KO, TRIF KO, 
and MyD88/TRIF Double KO) of murine macrophages [24]. The aim of 
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the study was to compare the global gene expression patterns invoked 
by wildtype and the mutant innate immune cells (macrophages) to 
environmental threat (LPS). We do recognize the fact that microarray 
or even the recently developed RNA-Seq datasets are prone to a large 
degree of technical error or biases, especially for the lowly expressed 
genes. Nevertheless, our goal was not to specifically identify individual 
novel genes expressed in all four conditions. Instead, we examined 
the global collective behaviors of the LPS-induced innate immune 
response.
　　Pearson correlation analysis [28], which provides a measure of 
deviation from unity as a source of difference between the samples 
was adopted. In our case, the Pearson correlation coefficient shows 
the compressed (averaged) information of the genome-wide response. 
We developed a scheme to compare the correlation coefficients 
between (i) the same genotype at different times (e.g., wildtype 0 h vs. 
wildtype 1 h, called auto-correlation) and, (ii) the same time point with 
different genotypes (e.g., wildtype 1 h vs. MyD88 KO 1 h, called cross-

correlation).
　　From the correlation plots, DKO auto-correlations were 
surprisingly similar to single KOs on the temporal scale (Fig. 4A, top). 
This data indicated that LPS is able to invoke gradual intracellular 
response, as seen by the monotonic deviation of correlation coefficient 
from unity, independent of the key adaptor signaling molecules 
of MyD88 and TRIF. The cross-correlations revealed that DKO 
response, compared with wildtype, is the least similar (Fig. 4B, top). 
This result indicated that DKO genome response, compared with 
single KOs, is most distinct from the wildtype response. Overall, 
although impaired, it was surprising that DKO, previously known to 
abolish all significant gene expressions [34], is able to invoke global gene 
expression response.
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　　To confirm whether DKO induces genome response, correlation 
coefficients of whole genome were compared with an ensemble 
comprising only of well-known proinflammatory genes (Fig. 4A,B, 
bottom). Notably, for the selected group of 157 proinflammatory 
genes, the auto-correlation of DKO was almost unchanged with time, 
indicating no noticeable ensemble response, consistent with other 
studies [34, 35]. Thus, these results indicated the presence of novel 
pathways, independent of MyD88 and TRIF, to activate novel gene 
expressions in DKO. Although we had pointed out a few biological 
processes not specifically related to immunity using the Gene 
Ontology database, we were unable to experimentally verify the 
specific DKO or TLR4-independent response of LPS at that time. 

Figure 4　(A) Auto- and  (B) cross- cor relations of  whole genome (top) and  157 
proinf lammatory or immune genes (bottom) af ter LPS stimulation. x-axis represents time 
and y-axis represents the correlation coeff icients. Figure obtained f rom [24].

Fig. 4(A) Fig. 4(B)
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Nevertheless, recently, two research teams have identified TLR4-
independent LPS activation of caspase-11, which plays a pivotal role 
in shaping inflammasome [36, 37]. Thus, our temporal Pearson statistical 
analysis was able to predict novel regulatory response from genome-
wide expression dataset with further experiments required for 
confirmation.

8   Noise in Human Developmental Cell Differentiation
　　The cell population responses, dealt so far, have been 
instrumental not only for cell signaling, but also for large-scale or 
global understanding of myriad deterministic biological processes 
such as immune response, growth, and metabolism. However, each 
cell within a population is not identical in its morphology or shape, 
and the intracellular molecular environment is highly inhomogenous. 
Furthermore, even genetically identical cells produce diverse 
phenotypes, such as a single stem or progenitor cell can produce 
distinct lineages, which can be tilted even by small external 
perturbations. Population-wide average techniques (e.g. linear 
response models) are not suitable for the investigation of cellular 
variability and inhomogeneity [38, 39]. 
　　Recent single-cell experimental techniques have revealed 
fluctuations in gene and protein expressions over time. Such 
fluctuations, measured by transcription, phosphorylation, morphology, 
and motility, have been key for generating cellular heterogeneity. 
Increasingly, investigators recognize that a combination of intrinsic 
and extrinsic factors contribute to cellular stochasticity: i) intrinsic 
or ‘uncorrelated’ noise; the random nature of biochemical reactions, 
e.g. due to low copy numbers of intracellular molecules in a Poisson 
process, and ii) extrinsic or ‘correlated’ noise; non-Poisson 
fluctuations in other cellular components or states that indirectly 
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affect the expression of a specific gene or protein.
　　To understand global gene expression structure and noise 
patterns of single cells during mammalian developmental stages, we 
investigated transcriptome-wide RNA-Seq expressions of human and 
mouse developmental cells [29]. A total of 7 in human and 10 in mouse, 
from oocytes to blastocysts, were analysed using correlation metrics, 
Shannon entropy and noise analyses.
　　Using gene expressions scatter plots, Pearson correlation and 
Shannon entropy between single cells data, we observed sharply 
increased variability from 2-cell to 4-cell stage onwards in both 
human and mouse (Fig. 5A). Next, global noise of single cells was 
investigated by quantifying the squared coefficient of expression 
variations over mean expression values which showed transition of 
noise patterns occurring between 2-cell and 8-cell stage (Fig. 5B). 
　　To understand the possible mechanisms for increased noise 
patterns for 4-cell stage onwards, we developed a stochastic 
transcriptional model based on ordinary differential equations and 
fitted the model to experimental noise patterns (Fig. 5C). From the 
simulation results, we concurred that the early developmental stages 
were mainly dominated by low transcriptional activity dominated 
by Poisson noise. The increase in transcriptome-wide noise for the 
middle stage developmental cells was due to stochastic transcriptional 
amplification, which generated heterogeneity in gene expressions 
between individual cells. Such heterogeneity has been shown to be 
necessary for cell fate diversifications (see review in ref. 38). For the 
later stages, on top of high transcriptional process, the cells possess 
quantal activation of most transcription factors, or are subject 
to more extrinsic variability such as phenotypic diversity among 
individual cells. These factors increase the general expression scatter 
and noise levels. 
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Fig. 5(A)
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　　Overall, the investigations into the transcriptome-wide 
expressions of the early mammalian developmental stages revealed 
increasing variability and noise patterns across the mammalian 
development process. These data suggested different stages of the 
cell differentiation process can be better understood by investigating 
the transcriptome-wide noise patterns. To summarize, our 
systemic approach provided novel insights into the transcriptome-
wide expression and noise patterns for development cells, and the 
underlying nature of the transcriptional mechanisms.
　　In conclusion, in this paper, our previous works on specific 

Figure 5　(A) Gene expression distribution between 2 single cells (lef t), Pearson 
correlations (top right), and Shannon entropy (bottom right) of  development cells f rom 
oocytes to blastocysts in human and mouse. (B) Experimental and (C) Simulated noise (η2) 
versus mean (μ) expression patterns for each development stage in human (top) and mouse 
(bottom). Figure reproduced f rom [29].

Fig. 5(B) Fig. 5(C)
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instructive cell signaling in immune and cancer response, as well as, 
the global gene expression analyses of immune and developmental cells 
have been reviewed. Our multidisciplinary techniques have allowed 
the elucidation of novel properties of dynamic cell behavior, both 
from deterministic and stochastic perspectives, not possible using 
traditional low throughput and steady-state data of molecular species. 
In coming years, we expect to witness further growth in complex 
systems biology approaches.
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Box 1: Perturbation-Response Approach 

　　The perturbation-response approach involves giving a small perturbation to the 
concentration of one or more reactant species in a network and analyzes the response profiles of 
other species within the network [1, 13-16]. To briefly examine, consider a linear-chain of reactions 
(X1 → X2 → X3 → ···) at steady-state condition. If the concentration of X1 is pulse perturbed, 
the concentrations of X2, X3, etc., will increase, go through a maximum, and then decrease back 
to its steady-state value in sequential order (see Fig. 2.2 of ref. 1). The experiments, based on 
the law of information conservation, connect the species between input and output fluxes through 
a linear superposition of propagation response waves (first-order response) [1, 13-16]. 
　　Despite the simplicity of the approach, linear response is visually apparent in the glycolytic 
metabolite profiles, EGF (epidermal growth factor), TLR3, and TLR4 signaling dynamics (see 
Fig. 2.3 of ref. 1). Although the kinetics could vary slightly from sample to sample, the general 
average response profiles are very well reproducible. In other words, regardless of how complex 
a signaling topology might be, the species’ average dynamic responses followed deterministic 
formation and depletion waves [1,13,14,16]. Notably, it can be shown, theoretically, that no matter 
how complex or non-linear the signaling system is, the dynamic response can be approximated 
using first-order terms if the perturbation levels are small [1,13,14,16]. 
　　Unlike typical kinetic models, which often use similar equations or sometimes with non-
linear expressions to model the dynamics of biological networks, our perturbation-response 
approach considers the network as a sequence of events rather than molecules. As signaling 
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networks are largely not fully understood, this difference is crucial as it prevents rigidly fixing 
the network topologies, and allows it to be modified according to experimental data so as to 
prevent overfitting problems and to identify novel features of signaling networks. In addition, as 
signaling process involves large number (thousands) of intracellular molecular activations, it is 
currently not plausible to model the dynamics of all possible reactions with the generally limited 
data. To overcome such difficulties, our approach permits the lumping of several molecules 
into a signaling specie in the model network. In this way, although the model does not become 
a comprehensive representation of an entire signaling process, however, it still allows the 
identification of overtly missing key features.
　　To successfully identify novel features of signaling networks, we set a target that the 
computational model should be able to simulate not just one experimental condition (like most 
models do), but in as many conditions as available (see maintext). Like any other modeling 
approach, there are certain limitations that require mentioning. Firstly, the perturbation-
response approach discussed does not comprehensively represent the details of each signaling 
reaction's kinetics. Secondly, the small perturbation assumption leading to the first-order mass-
action equations represents an average cell response and this cannot be used to study single cell 
stochastic behavior or non-linear behaviors such as bistability. Thirdly, the model predictions 
will show relative, and not absolute, activation levels. However, the approach can be universally 
applied to model any pathways that experimentally display formation and depletion waves. 

Box 2 Response Rules

　　Rule 1, Controlling flux: Controlling the upstream parameter of a hypothetical molecule X2 
(See Fig. S1 of Ref. 12) mostly affects the slope of the formation part of the expression profile. 
Alternatively, controlling the downstream parameter mainly modifies the expression profile’s 
depletion part. Rule 2, Time delay: by comparing the time to reach peak activation, any time 
delay in target signaling molecule’s activation represents ‘missing’ cellular features such as 
directed transport machinery, protein complex formation, and novel molecular interactions. Rule 
3, Feedforward flux: A) Rapid kinetics: when simulation of a downstream molecule is noticeably 
quicker than experimental dynamics, B) Similar kinetics: when removing a molecule along a 
pathway does not completely abolish its downstream intermediates, C) Delayed kinetics: when 
removing a molecule along a pathway show significant delay. In all these cases, the superposition 
principle suggests a novel feedforward pathway with different number of intermediates. Rule 
4, Feedback flux: when a response profile shows multiple peaks or continuous increase of 
activation not following pulse perturbation response, this indicates feedback pathways such 
as posttranslational effect or secondary (autocrine/paracrine) signaling. Rule 5, Signaling Flux 
Redistribution (SFR): At pathway junctions, removing a molecule enhances the entire alternative 
pathways. Rule 6, No SFR: At pathway junctions, removing a molecule does not enhance the 
alternative pathway, suggesting novel i) intermediate(s) between the removed molecule and the 
pathway junction or ii) pathway link between the removed molecule and the alternative pathway. 
Rule 7, Differential flux: quantifies each pathway branch by comparing activation levels between 
wildtype and mutants data. Rule 8, Reversible flux: when a response profile show limiting decay 
that cannot be modeled by first-order decay, the presence of reversible step is expected to 
produce limiting decay. Rule 9, Non-linearity: When complex dynamics is observed, the linear 
response approach breaks down, and non-linear approaches are needed.
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